Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We utilize the cosmological volume simulation FIREbox to investigate how a galaxy’s environment influences its size and dark matter content. Our study focuses on approximately 1200 galaxies (886 central and 332 satellite halos) in the low-mass regime, with stellar masses between 106and 109M⊙. We analyze the size–mass relation (r50–M⋆), the inner dark matter mass–stellar mass ( –M⋆) relation, and the halo mass–stellar mass (Mhalo–M⋆) relation. At fixed stellar mass, we find that galaxies experiencing stronger tidal influences, indicated by higher Perturbation Indices (PI > 1) are generally larger and have lower halo masses relative to their counterparts with lower Perturbation Indices (PI < 1). Applying a Random Forest regression model, we show that both the environment (PI) and halo mass (Mhalo) are significant predictors of a galaxy’s relative size and dark matter content. Notably, becauseMhalois also strongly affected by the environment, our findings indicate that environmental conditions not only influence galactic sizes and relative inner dark matter content directly, but also indirectly, through their impact on halo mass. Our results highlight a critical interplay between environmental factors and halo mass in shaping galaxy properties, affirming the environment as a fundamental driver in galaxy formation and evolution.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Abstract We study the stellar properties of a sample of simulated ultradiffuse galaxies (UDGs) with stellar massM⋆= 107.5–109M⊙, selected from the TNG50 simulation, where UDGs form mainly in high-spin dwarf-mass halos. We divide our sample into star-forming and quenched UDGs, finding good agreement with the stellar assembly history measured in observations. Star-forming UDGs and quenched UDGs withM⋆≥ 108M⊙in our sample are particularly inefficient at forming stars, having 2–10 times less stellar mass than non-UDGs for the same virial mass halo. These results are consistent with recent mass inferences in UDG samples and suggest that the most inefficient UDGs arise from a late assembly of the dark matter mass followed by a stellar growth that is comparatively slower (for star-forming UDGs) or that was interrupted due to environmental removal of the gas (for quenched UDGs). Regardless of efficiency, UDGs are 60% poorer in [Fe/H] than the population of non-UDGs at a fixed stellar mass, with the most extreme objects having metal content consistent with the simulated mass–metallicity relation atz∼ 2. Quenched UDGs stop their star formation in shorter timescales than non-UDGs of similar mass and are, as a consequence, alpha enhanced with respect to non-UDGs. We identify metallicity profiles in UDGs as a potential avenue to distinguish between different formation paths for these galaxies, where gentle formation as a result of high-spin halos would present well-defined declining metallicity radial profiles while powerful-outflows or tidal stripping formation models would lead to flatter or constant metallicity as a function of radius due to the inherent mixing of stellar orbits.more » « lessFree, publicly-accessible full text available December 1, 2025
-
ABSTRACT The velocity dispersion of globular clusters (GCs) around ultra-diffuse galaxies (UDGs) in the Virgo cluster spans a wide range, including cases where GC kinematics suggest haloes as massive as (or even more massive than) that of the Milky Way around these faint dwarfs. We analyse the catalogues of GCs derived in post-processing from the TNG50 cosmological simulation to study the GC system kinematics and abundance of simulated UDGs in galaxy groups and clusters. UDGs in this simulation reside exclusively in dwarf-mass haloes with M200 ≲ 1011.2 M⊙. When considering only GCs gravitationally bound to simulated UDGs, we find GCs properties that overlap well with several observational measurements for UDGs. In particular, no bias towards overly massive haloes is inferred from the study of bound GCs, confirming that GCs are good tracers of UDG halo mass. However, we find that contamination by intracluster GCs may, in some cases, substantially increase velocity dispersion estimates when performing projected mock observations of our sample. We caution that targets with less than 10 GC tracers are particularly prone to severe uncertainties. Measuring the stellar kinematics of the host galaxy should help confirm the unusually massive haloes suggested by GC kinematics around some UDGs.more » « less
-
ABSTRACT We study the formation of ultradiffuse galaxies (UDGs) using the cosmological hydrodynamical simulation TNG50 of the Illustris-TNG suite. We define UDGs as dwarf galaxies in the stellar mass range $$\rm {7.5 \le log (M_{\star } / {\rm M}_{\odot }) \le 9 }$$ that are in the 5 per cent most extended tail of the simulated mass–size relation. This results in a sample of UDGs with half-mass radii $$\rm {r_{h \star } \gtrsim 2 \ kpc}$$ and surface brightness between $$\rm {24.5}$$ and $$\rm {28 \ mag \ arcsec^{-2}}$$, similar to definitions of UDGs in observations. The large cosmological volume in TNG50 allows for a comparison of UDGs properties in different environments, from the field to galaxy clusters with virial mass $$\rm {M_{200} \sim 2 \times 10^{14} ~ {\rm M}_{\odot }}$$. All UDGs in our sample have dwarf-mass haloes ($$\rm {M_{200}\sim 10^{11} ~ {\rm M}_{\odot } }$$) and show the same environmental trends as normal dwarfs: field UDGs are star-forming and blue while satellite UDGs are typically quiescent and red. The TNG50 simulation predicts UDGs that populate preferentially higher spin haloes and more massive haloes at fixed $$\rm {M_{\star }}$$ compared to non-UDG dwarfs. This applies also to most satellite UDGs, which are actually ‘born’ UDGs in the field and infall into groups and clusters without significant changes to their size. We find, however, a small subset of satellite UDGs ($$\lesssim 10~{{\ \rm per\ cent}}$$) with present-day stellar size a factor ≥1.5 larger than at infall, confirming that tidal effects, particularly in the lower mass dwarfs, are also a viable formation mechanism for some of these dwarfs, although sub-dominant in this simulation.more » « less
-
null (Ed.)ABSTRACT We study the role of group infall in the assembly and dynamics of galaxy clusters in ΛCDM. We select 10 clusters with virial mass M200 ∼ 1014 $$\rm M_\odot$$ from the cosmological hydrodynamical simulation Illustris and follow their galaxies with stellar mass M⋆ ≥ 1.5 × 108 $$\rm M_\odot$$. A median of $${\sim}38{{\ \rm per\ cent}}$$ of surviving galaxies at z = 0 is accreted as part of groups and did not infall directly from the field, albeit with significant cluster-to-cluster scatter. The evolution of these galaxy associations is quick, with observational signatures of their common origin eroding rapidly in 1–3 Gyr after infall. Substructure plays a dominant role in fostering the conditions for galaxy mergers to happen, even within the cluster environment. Integrated over time, we identify (per cluster) an average of 17 ± 9 mergers that occur in infalling galaxy associations, of which 7 ± 3 occur well within the virial radius of their cluster hosts. The number of mergers shows large dispersion from cluster to cluster, with our most massive system having 42 mergers above our mass cut-off. These mergers, which are typically gas rich for dwarfs and a combination of gas rich and gas poor for M⋆ ∼ 1011 $$\rm M_\odot$$, may contribute significantly within ΛCDM to the formation of specific morphologies, such as lenticulars (S0) and blue compact dwarfs in groups and clusters.more » « less
An official website of the United States government
